Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning

نویسندگان

  • Hartwig Anzt
  • Jack J. Dongarra
  • Goran Flegar
  • Enrique S. Quintana-Ortí
  • Andrés E. Tomás
چکیده

In this work we present new kernels for the generation and application of block-Jacobi preconditioners that accelerate the iterative solution of sparse linear systems on graphics processing units (GPUs). Our approach departs from the conventional LU factorization and decomposes the diagonal blocks of the matrix using the Gauss-Huard method. When enhanced with column pivoting, this method is as stable as LU with partial/row pivoting. Due to extensive use of GPU registers and integration of implicit pivoting, our variable size batched Gauss-Huard implementation outperforms the batched version of LU factorization. In addition, the application kernel combines the conventional two-stage triangular solve procedure, consisting of a backward solve followed by a forward solve, into a s ngle stag that performs both operations simulta eously.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning Waveform Relaxation Iterations for Differential Systems

We discuss preconditioning and overlapping of waveform relaxation methods for sparse linear diierential systems. It is demonstrated that these techniques signiicantly improve the speed of convergence of the waveform relaxation iterations resulting from application of various modes of block Gauss-Jacobi and block Gauss-Seidel methods to diierential systems. Numerical results are presented for li...

متن کامل

Component-wise algebraic multigrid preconditioning for the iterative solution of stress analysis problems from microfabrication technology

A methodology for preconditioning discrete stress analysis systems using robust scalar algebraic multigrid (AMG) solvers is evaluated in the context of problems that arise in microfabrication technology. The principle idea is to apply an AMG solver in a segregated way to the series of scalar block matrix problems corresponding to different displacement vector components, thus yielding a block d...

متن کامل

Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations

We compare different block preconditioners in the context of parallel time adaptive higher order implicit time integration using Jacobian-free Newton-Krylov (JFNK) solvers for discontinuous Galerkin (DG) discretizations of the three dimensional time dependent Navier-Stokes equations. A special emphasis of this work is the performance for a relative high number of processors, i.e. with a low num...

متن کامل

A block multigrid strategy for two-dimensional coupled PDEs

We consider the solution of linear systems of equations, arising from the finite element approximation of coupled differential boundary value problems. Letting the fineness parameter tend to zero gives rise to a sequence of large scale structured two-by-two block matrices. We are interested in the efficient iterative solution of the so arising linear systems, aiming at constructing optimal prec...

متن کامل

A Parallel Implementation of the Block Preconditioned GCR Method

The parallel implementation of GCR is addressed, with particular focus on communication costs associated with orthogonalization processes. This consideration brings up questions concerning the use of Householder reflections with GCR. To precondition the GCR method a block Gauss-Jacobi method is used. Approximate solvers are used to obtain a solution of the diagonal blocks. Experiments on a clus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017